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Abstract: The purpose of image restoration is to "compensate for" or "undo" defects which degrade an image. 

Degradation comes in many forms such as motion blur, noise, and camera miss focus. In cases like motion blur, 

it is possible to come up with a very good estimate of the actual blurring function and "undo" the blur to restore 

the original image. In cases where the image is corrupted by noise, the best we may hope to do is to compensate 

for the degradation it caused. In this project, we will introduce and implement several of the methods used in 

the image processing world to restore image dictionary learning algorithm 

 

I. Introduction 
Sparse Representation 

In the last decade, sparsity has emerged as one of the leading concepts in a wide range of signal-

processing applications (restoration, feature extraction, compression, to name only a few applications). Sparsity 

has long been an attractive theoretical and practical signal property in many areas of applied mathematics (such 

as computational harmonic analysis, statistical estimation, and theoretical signal processing). Recently, 

researchers spanning a wide range of viewpoints have advocated the use of over complete signal representations 

[5]. Such representations differ from the more traditional representations because they offer a wider range of 

generating elements (called atoms). 

 

B. Strictly Sparse Signals / Images 

A signal x, considered as a vector in a finite-dimensional subspace of x = [x[1],……. .x[N]], is strictly or 

exactly sparse if most of its entries are equal to zero, that is, if its support Δ(x) = {1 ≤ i ≤ N | x[i ] ≠0} is of 

cardinality k <<N. A k-sparse signal is a signal for which exactly k samples have a nonzero value. If a signal is 

not sparse, it may be sparsified in an appropriate transform domain. For instance, if x is a sine, it is clearly not 

sparse, but its Fourier transform is extremely sparse (actually, 1-sparse). 

 

More generally, we can model a signal x as the linear combination of T elementary waveforms, also 

called signal atoms, such that 

 
In approximation methods, typical norms used for measuring the deviation are the -norms for p=1,2,….. 

In this paper, we shall concentrate on the case p=2. If n<< k and D is a full-rank matrix, an infinite number of 

solutions are available for the representation problem, hence constraints on the solution must be set. The solution 

with the fewest number of non zero coefficients is certainly an appealing representation. This sparsest 

representation is the solution of either  

 
Where is the norm, counting the nonzero entries of a vector. 

 

C. Sparse Coding 

Sparse coding is the process of computing the representation coefficients X based on the given signal Y 

and the dictionary D. This process, commonly referred to as “atom decomposition,” requires solving 1 & 2 

equations, and this is typically done by a “pursuit algorithm” that finds an approximate solution. Exact 

determination of sparsest representations proves to be an NP-hard problem. The simplest ones are the matching 
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pursuit (MP) and the orthogonal matching pursuit (OMP) algorithms. These are greedy algorithms that select the 

dictionary atoms sequentially. 

A second well-known pursuit approach is the basis pursuit (BP). It suggests a convexification of the problems 

 

II. Existing Method: 
 Block-Matching,  

 Discrete Cosine Transform 

 Image de-noising in spatial domain  

 Edge Detection.  

 Image De-blurring Using Wiener Filter 

 Image De-noising Using Wavelet Transform based Anisotropic Diffusion Filter  

 

Drawbacks: 

 The filters can’t efficiently suppress the noise in grayscale images  

 The Block-Matching can’t preserving edges and fine features 

 DCT method fails to give more details about edges in all orientation 

 

III. Design Of Dictionaries 
We now come to the main topic of the paper, the training of dictionaries based on a set of examples. Given  

such a  we assume that there exists a dictionary D that gave rise to the given signal examples via sparse 

combinations, i.e., we assume that there exists D, so that solving (p0) for each example yk  gives a sparse 

representation x. 

 
 

A. Generalizing K-Means 

There is an intriguing relation between sparse representations and clustering .In clustering, a set of descriptive 

Vectors  is learned, and each sample is represented by one of those vectors. There is a variant of the vector 

quantization (VQ) coding method, called gain-shape VQ, where this coefficient is allowed to vary. In contrast, in 

sparse representations as discussed in this paper, each example is represented as a linear combination of several 

vectors  

Since the K -means algorithm (also known as the generalized Lloyd algorithm-GLA) is the most 

commonly used procedure for training in the vector quantization setting; it is natural to consider generalizations 

of this algorithm when 

Turning to the problem of dictionary training. Here we shall briefly mention that the K-means process applies 

two steps per each iteration:  

i) given , assign the training examples to their nearest neighbor; and 

ii) given that assignment, update  to better fit the examples. 
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B. Maximum Likelihood Methods 

The methods reported in use probabilistic reasoning in the construction of D. The proposed model suggests that 

for every example the relation 

 

Holds true with a sparse representation x and Gaussian white residual vector v with variance Given the 

examples, these works consider the likelihood function P(Y|D) and seek the dictionary that maximizes it. 

Two assumptions are required in order to proceed: the first is that the measurements are drawn independently, 

readily 

providing 

 
The second assumption is critical and refers to the “hidden variable” X. The ingredients of the likelihood 

function are computed using the relation 

 
Returning to the initial assumption, we have 

 
The prior distribution of the representation vector x is assumed to be such that the entries of x are zero mean 

i.i.d., with Cauchy or Laplace distributions. Assuming for example a Laplace distribution, we get 

 
This integration over x is difficult to evaluate, and indeed, Olshausen and Field handled this by replacing it with 

the external value of The overall problem turns into 

 
This problem does not penalize the entriesof D as it does for those of. An iterative method was suggested for 

solving above equation. It includes two main steps in each iteration: 

i) Calculate the coefficients using a simple gradient descent procedure and then 

ii) Update the dictionary 

 

C. The MOD Method 

An appealing dictionary training algorithm, named method of optimal directions (MOD), is presented 

by Engan. This method follows more closely the k-means outline, with a sparse coding stage that uses either 

OMP or FOCUSS followed by an update of the dictionary. The main contribution of the MOD method is its 

simple way of updating the dictionary. Assuming that the sparse coding for each example is known, we define 

the errors. The overall representation mean square error is given by 

 
We have concatenated all the examples yi as columns of the matrix Y and similarly gathered the 

representations coefficient vectors xi to build the matrix X. 

 

D. Maximum A-Posteriori Probability Approach 

The same researchers that conceived the MOD method also suggested a MAP probability setting for the 

training of dictionaries, attempting to merge the efficiency of the MOD with a natural way to take into account 

preferences in the recovered dictionary.. However, rather than working with the likelihood function P(Y|D), the 

posterior P(D|Y) is used. Using Bayes’ rule, we have P(D|Y) α P(Y|D)P(D) , and thus we can use the likelihood 

expression as before and add a prior on the dictionary as a new ingredient. When no prior is chosen, the update 

formula is the very one used by Olshausen and Field. A prior that constrains D to have a unit Frobenius norm 

leads to the update formula 
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The last term compensates for deviations from the constraint. This case allows different columns in D 

have different norm values. As a consequence, columns with small norm values tend to be underused, as the 

coefficients they need are larger and as such more penalized. Compared to the MOD, this line of work provides 

slower training algorithms. 

 

IV. The K-SVD Algorithm 
This algorithm is flexible and works in conjunction with any pursuit algorithm. It is simple and 

designed to be a truly direct generalization of the k-means. As such, when forced to work with one atom per 

signal, it trains a dictionary for the gain-shape VQ. When forced to have a unit coefficient for this atom, it 

exactly reproduces the K–means algorithm. The KSVD is highly efficient, due to an effective sparse coding and 

a Gauss–Seidel-like accelerated dictionary update method. The algorithm’s steps are coherent with each other, 

both working towards the minimization of a clear overall objective function. 

 

A. K-SVD Algorithm Goal: To find the best dictionary to represent the data sample as sparse 

decompositions. 

 

Initialization: Set the dictionary matrix  normalized columns. Set J=1.Repeat until convergence 

Sparse coding stage: Use any pursuit algorithm to compute the representation vectors xi for each example yi by 

Approximating the solution of i =1,2,……..N,  

Codebook update stage: For each column k=1,2,....k in update it by 

1.Define the group of examples 

that use this atom,wk={i| 1≤i ≤ N, (i)≠0}. 

   2. Compute the overall representation error matrix  

   3.Restrict Ek by choosing only the columns corresponding to wk and obtain Ek^R 

   4.Apply SVD decomposition Ek^R= udv^T Choose the updated dictionary column dk to be the first column of 

U. Update the coefficient vector to be the first column of V multiplied by D(1,1). Set J=J+1. 

 

B. K-SVD Implementation Detail 

1) When using approximation methods with a fixed number of coefficients, we found that FOCUSS proves to be 

the best in terms of getting the best out of each iteration. However, from a run-time point of view, OMP was 

found to lead to far 

More efficient overall algorithm 

2) When a dictionary element is not being used “enough” it could be replaced with the least represented signal 

element, after being normalized. Since the number of data elements is much larger than the number of dictionary 

elements, and since our model assumption suggests that the dictionary atoms are of equal importance, such 

replacement is very effective in avoiding local minima and over fitting. 

3) Similar to the idea of removal of unpopular elements from the dictionary, we found that it is very effective to 

prune the dictionary from having too-close elements. If indeed such a pair of atoms is found, one of those 

elements should be removed and replaced with the least represented signal element. 

 

 

 

 

 

 

 

 

 

 



Image Restoration Using Sparse Dictionary Matrix Learning K-SVD Algorithm 

International Conference on Electrical, Information and Communication Technologies                          55 | Page 

(ICEICT -2017) 

Block Diagram 

 
 

SPARSE DICTIONARY LEARNING 

Sparse dictionary learning is a representation learning method which aims at finding a sparse 

representation of the input data (also known as sparse coding) in the form of a linear combination of basic 

elements as well as those basic elements themselves.  

 These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not 

required to be orthogonal, and they may be an over-complete spanning set.  

 This problem setup also allows the dimensionality of the signals being represented to be higher than the 

one of the signals being observed. The above two properties lead to having seemingly redundant atoms that 

allow multiple representations of the same signal but also provide an improvement in sparsity and flexibility of 

the representation. 

 

 Dictionary learning 

The resulting dictionary is in general a dense matrix, and its manipulation can be computationally costly 

both at the learning stage and later in the usage of this dictionary, for tasks such as sparse coding.  Dictionary 

learning is thus limited to relatively small-scale problems. Inspired by usual fast transforms, we proposed a 

general dictionary structure that allows cheaper manipulation, and an algorithm to learn such dictionaries –and 

their fast implementation– over training data. The approach was demonstrated experimentally with the 

factorization of the Hadamard matrix and with synthetic dictionary learning experiments  

 

 

 
ORTHOGONAL MATCHING PURSUIT 

Orthogonal matching pursuit algorithm, the correlation coefficient of atoms and the residual error are 

calculated, and the Dice similarity coefficient is introduced and used as a new principle to select atoms from the 
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atom library. Thus it can improve the accuracy of color-information replication effectively, and high-accuracy 

reproduction of color information can be realized.  Principal Components on the Accuracy of Spectral-

reflectance Reconstruction 

 
 

Advantages 

 It gives the better signal to noise ratio and preserves the image edges and textures 

  The noise coefficients can be analyzed easily by component based techniques. 

  The shrinkage method will be suppressed the noise effectively from the natural images. 

 

Application 

 Security Process on Toll Gate (License Plate Verification) Application 

  Medical Application 

  Photoshop Application 

 

Software Requirements 

 MATLAB 2013a 

 

V. Conclusion 
In this paper, we addressed the problem of generating and using over complete dictionaries. We proved 

that K-SVD algorithm is the best for training an over complete dictionary that best suits a set of given signals. 

This algorithm is a generalization of the K-means, designed to solve a similar but constrained problem. We have 

shown that the dictionary found by the K-SVD performs well for both synthetic and real and outperforms 

alternatives such as the no decimated Haar and overcomplete or unitary DCT. 

 

OUTPUT 
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